Some evidence about climate changes and shifts in the Baltic Sea

Tarmo Soomere

Centre for Nonlinear Studies
Institute of Cybernetics at Tallinn University of Technology

Outline

\mathscr{H} The Baltic Sea
\& Motivation
\mathscr{H} The water body
> Stability of circulation
\& Surface effects
> Water level
> Waves
$>$ Ice
\& Response

Baltic Sea: a strange water body

Inner sea of the EC
Relatively shallow: $\mathrm{S}=380,000 \mathrm{~km} 2$, $\mathrm{V}=21,000 \mathrm{~km} 3$, mean depth $\sim 55 \mathrm{~m}$

Long coastline, no tides, no jet currents
Combines properties of (i) large estuary, (ii) large lake, (iii) small ocean

Water exchange time ~ 25 years
Brackish water, with strong horizontal \& vertical gradients, small circulation cells Particularly sensitive sea area by IMO
> . , 20n C $\square N S$

SEAMOCS worksh Palmse 11-12 October

Motivation: drastic changes in many sea state parameters

Secchi depth 1900-2000 in the Baltic Sea

Bay of Bothnia $7 \rightarrow 5 \mathrm{~m}$

Courtesy to Matti Leppäranta, University of Helsinki

The sea-surface temperature has increased in 50 years by about 0.5 degrees

Fig xx. Annual averages of surface water 0-30 m) (a) salinity and (b) temperature at Utö , Tvärminne and Harmaja in the years 19501999. Seasonal averages of temperature (May-July (■), August-November (O), and December-Apr) (A) are shown in (b)

Variability versus long term changes: Baltic Sea as a test area

\mathscr{H} relatively small size: susceptibility with respect to the external forcing factors
\mathscr{H} mostly separated from the rest of the World Ocean
\mathscr{H} forcing factors easy to identify \& measure
$\not \&$ basin-wide studies within a reasonable budget
\mathscr{H} numerous changes of the forcing conditions and of the reaction of the water masses already identified during the latter decade

Part I

The water body

Classical circulation pattern: estuarine transport combined with front development

Two water different water masses \rightarrow front

Helsinki

Narrow inflow along the southern coast

Estuarine transport:

may be reversed

the entrance to the Gulf may serve as a "chimney" for ventilation of deep water of the Baltic Sea

Fig. Xx. Time series in the western part of the Gulf of $\stackrel{\frac{1}{\circ}}{>}$ Finland during 1998: (a) salinity observations at station
a)

Time (month)

Conveyor belt: does it exist? Is it stable?

Rossby radius - "measure" of size of structures in the water body

\checkmark Affects (the size of) mesoscale features \rightarrow transport properties, water age pattern etc. etc.

Average baroclinic Rossby radius in the Gulf of Finland based on nearly 2000 CTD-cast in 1990's (Alenius,Myrberg, Nekrasov, 2003).

Patterns: clear structure in the subsurface layer (average 1987-1992)

Climate change: does it involve change of current patterns?
(just because of change of the Rossby radius?)

... Or the water age (\sim measure of water quality, pollution level etc.)

The oldest bottom water -- about 8.3 years
Water renewal time - 5 years (river discharge only: 10 years)

Part II

Forcing factors and reaction of sea

 surface
Wind structure

Surface waves

Water level

Sea ice

Wind data: from NE Baltic Sea

Vilsandi,
 Once each 3 hours

No changes in the 1980s and the 1990s

Response I: upwelling patterns strongly wind-structure-dependent

UPWELLING INDEX, \%

GULF OF FINLAND

Upwelling \& description of vertical mixing: still a challenge for circulation models

Response II: coastal processes

Pirita Beach near Tallinn: usually a nice beach

Photo: Kaarel Orviku
MOCS workshop
Palmse 11-12 October 2007

... While storms from "correct" direction cause "reasonable" damage

Possible background: strongest winds come from unexpected directions

Blue: all winds
Green: winds $>5 \mathrm{~m} / \mathrm{s}$ Red: winds $>10 \mathrm{~m} / \mathrm{s}$

Also in the Baltic Proper

Dominating south North winds: also and southwest present winds

West and east winds blowing along the gulf axis SEAMOCS workshop (Specific to the Gulf of Finland)

Sea level at Hanko: change of uplift

 rate?

Hanko (132)

Sea level: unexpected maxima © (red: new maxima in J anuary 2005)

Long-term wave statistics in the northern part of the Baltic Sea

At a few locations
\& Bothnian sea:
\not Open sea: $1996 \rightarrow$ (Kahma et al. 2003)
\& Almagrundet 1978-2003 (Broman et al. 2006)
\mathscr{H} Gulf of Finland 1991 \rightarrow ice-free time (Pettersson 2001 \& 2004)

Long term trend: wave heights seem to increase by $1.8 \% /$ year (Almagrundet)

Long-term variation

 of annual mean wave heights: Two Almagrundet data sets fit perfectly Soomere \& Zaitseva, Proc. Estonian Academy Sci. 2007

Trend since 1997: opposite to wind speed trend

[^0]Scatter diagram of wave heights and periods

Wave

 heights and periods: reasonableIsolines for 1, 3, 10, 33, 100, 330, 1000 and 3300 cases, 1978-1995
 One storm J anuary 1984
Unexpectedly high: 09 J an 2005

> Measured 7.2 m ; model 8.5 m
Model >11m;
Factual Hs ~9.5m
Sign. wave height: 2005 jan $0906 z$

SEAMOCS workshop Palmse 11-12 October 2007

This sea surface around Estonia is not always in motion

I ce climatology (Svetlana J evrejeva, Matti Leppäranta)
> large east - west variability: one month in both freezing date and break-up date in the Gulf of Finland alone
> ice break-up has become earlier by 10 days/100 years (Utö)
> probability of freezing decreasing 20% units per 100 years

Change in ice conditions: drastic

Sooäär and J aagus 2007

(some) lessons to learn

\mathscr{H} extremes becoming more extreme
\mathscr{H} the factual (extent of) response poorly understood
\mathscr{H} trends of the average and of extreme values of certain properties are different!
\mathscr{H} and even trends of the forcing factor and the response are different (wind // waves)

Wishing further challenges and success to everybody!

[^0]:

