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Introduction Presenting the problem Proposed solution Some applications

Detection

Definition, according to the IPCC AR3 :

“Detection is the process of demonstrating that an observed
change is significantly different (in a statistical sense) than can be
explained by natural internal variability”

Detection of the anthropogenic climate change :

Investigation of the presence of a particular signal, given by
climate model simulation

Double objectives :

Show the existence of a significant change of the observations
Validate the climate models
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Statistical modelisation

Notations :

ψ : random climate vector, of dimension p, taking one value
per year

C : the covariance matrix of ψ

g : the climate change vector, of dimension p, given by a
model
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Framework

Assumptions

(ψi )i∈J1,nK ∈ Rp rv iid having a N(0,C ) distribution

ψn+1 ∈ Rp, independent of the (ψi )i∈J1,nK, having a N(µg ,C )
distribution

With µ ∈ R, g ∈ Sp−1 ⊂ Rp, and C ∈Mp(R)

Test

One wants to test :

H0 : “µ = 0” vs H1 : “µ > 0”

in large dimension, that is to say n ∼ p.

5 / 17



Introduction Presenting the problem Proposed solution Some applications

Framework

Assumptions

(ψi )i∈J1,nK ∈ Rp rv iid having a N(0,C ) distribution

ψn+1 ∈ Rp, independent of the (ψi )i∈J1,nK, having a N(µg ,C )
distribution

With µ ∈ R, g ∈ Sp−1 ⊂ Rp, and C ∈Mp(R)

Test

One wants to test :

H0 : “µ = 0” vs H1 : “µ > 0”

in large dimension, that is to say n ∼ p.

5 / 17



Introduction Presenting the problem Proposed solution Some applications

Investigated test family

One considers the following tests (Tf )f ∈Rp :

Test variable df

df = 〈ψn+1, f 〉 ∼H0 N(0, f ′Cf )

Rejection region

Wf =
{
ψn+1 ∈ Rp, df = 〈ψn+1, f 〉 ≥ d

(α)
f

}
with

d
(α)
f = Φ−1(1− α)

√
f ′Cf
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OptimalTf

Question

Knowing C and g , is there an optimal Tf ?

Answer : yes

TC−1g is optimal, among the (Tf ), within the following meaning

dC−1g maximise the signal-to-noise

TC−1g is the most powerful test

TC−1g is the likelihood ratio test
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Notations

In the case “C unknown”, one wants to approximate TC−1g .
Two new test families are considered.
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Notations

In the case “C unknown”, one wants to approximate TC−1g .
Two new test families are considered.

Tf tests

f is “estimated” : depending on (ψi )i∈J1,nK, that are random,
and on g

The level, conditionally to (ψi )i∈J1,nK, is nominal;

C is known, only for computing d
(α)
f = Φ−1(1− α)

√
f ′Cf
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Notations

In the case “C unknown”, one wants to approximate TC−1g .
Two new test families are considered.

Tf tests

Tf tests

f is estimated

The threshold d
(α)
f is estimated depending on g and

(ψi )i∈J1,nK; in the same way for the p-value

The level is not necessarily nominal
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Notations

In the case “C unknown”, one wants to approximate TC−1g .
Two new test families are considered.

Tf tests

Tf tests

Naive test : Tg
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Problem when C is not known

Objectives

One wants to construct a Tf test having “good” properties :

Nominal level

A power greater than the one of the naive test Tg

Remark

It is possible to firstly study Tf , noticing that “Tf > Tf ”
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Using the empirical covariance matrix

Ĉ =
1

n

n∑
i=1

ψiψ
′
i

Does TĈ−1g have good properties ?

No ! (Ĉ is quasi-singular)
The use of a pseudo-inverted truncation of Ĉ doesn’t give an
efficient test either
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Regularisation in our case : shrinkage

Main idea

One uses γĈ + ρIp instead of Ĉ .

Justification

Interpolation with the naive test Tg

Ridge regression point of view

Power of the tests T
(γĈ+ρIp)

−1
g
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Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned
Estimator for Large Dimensional Covariance Matrices)

Framework :

One reasons on Mp(R) with the norm

‖A‖2
Mp

=
Tr(AA′)

p

A “general asymptotics” framework is used : n, pn,
pn

n ≤ K

Estimators of the following family are investigated
C ∗ = γĈ + ρIp. One researches the C ∗ minimising :

E
(
‖C ∗ − C‖2

Mp

)
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Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned
Estimator for Large Dimensional Covariance Matrices)

n fixed : optimal γ0
n and ρ0

n depending on C

γ0
n =

α2

δ2
, and ρ0

n =
β2ν

δ2

where

ν = 〈C , Ip〉Mp =
Tr(C )

p
, α2 = ‖C − νIp‖2

Mp
,

β2 = E
(
‖Ĉ − C‖2

Mp

)
, δ2 = E

(
‖Ĉ − νIp‖2

Mp

)
,
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Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned
Estimator for Large Dimensional Covariance Matrices)

n fixed : optimal γ0
n and ρ0

n depending on C

Under “general asymptotics” : convergent estimators γ̂0
n and

ρ̂0
n of γ0

n and ρ0
n

γ̂ =
α̂2

δ̂2
, and ρ̂ =

β̂2ν̂

δ̂2

With

ν̂ = 〈Ĉ , Ip〉Mp =
Tr(Ĉ )

p
, β̂2 = min

(
δ̂2,

1

n2

n∑
i=1

‖ψiψ
′
i − Ĉ‖2

Mp

)
,

δ̂2 = ‖Ĉ − ν̂Ip‖2
Mp

, α̂2 = δ̂2 − β̂2.
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Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned
Estimator for Large Dimensional Covariance Matrices)

n fixed : optimal γ0
n and ρ0

n depending on C

Under “general asymptotics” : convergent estimators γ̂0
n and

ρ̂0
n of γ0

n and ρ0
n

A new estimator of C is defined :

ĈI = γ̂0
nĈ + ρ̂0

nIp
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Bootstrap’s motivations

One has to achieve the construction of TĈ−1
I g , by :

computing the test threshold (and more generally the
p-value),

verifying that this computation is correct, or that the level is
close to the nominal value,

computing the power.
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Additional treatment

Choice of a learning sample,

Temporal treatment (mobile average),

Spatial centering.
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Naive Optimal regularised
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Figure: Summer minimum temperatures in the model : Comparison
between the naive test Tg and the optimal regularised TĈ−1

I g for summer

minimum temperatures taken from a climate scenario.
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Minimum Maximum
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Figure: Summer temperatures in observations : Results for minimum
and maximum temperatures
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