Methodology for statistical detection of climate change

Aurélien RIBES, Jean-Marc AZAÏS, Serge PLANTON

October 11, 2007

SEAMOCS Workshop

Detection

Definition, according to the IPCC AR3 :

"Detection is the process of demonstrating that an observed change is significantly different (in a statistical sense) than can be explained by natural internal variability"

Detection

Definition, according to the IPCC AR3 :

"Detection is the process of demonstrating that an observed change is significantly different (in a statistical sense) than can be explained by natural internal variability"

Detection of the anthropogenic climate change :

- Investigation of the presence of a particular signal, given by climate model simulation
- Double objectives :
- Show the existence of a significant change of the observations
- Validate the climate models

Statistical modelisation

Notations :

- ψ : random climate vector, of dimension p, taking one value per year
- C : the covariance matrix of ψ
- g : the climate change vector, of dimension p, given by a model

(1) Introduction

(2) Presenting the problem

- Framework
- Result when C is known
- The problem when C is not known
(3) Proposed solution
- Regularisation
- Bootstrap

4 Some applications

- Climate scenario
- Observations

Framework

Assumptions

- $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket} \in \mathbb{R}^{p}$ rv iid having a $N(0, C)$ distribution
- $\psi_{n+1} \in \mathbb{R}^{p}$, independent of the $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket}$, having a $N(\mu g, C)$ distribution

With $\mu \in \mathbb{R}, g \in \mathbb{S}^{p-1} \subset \mathbb{R}^{p}$, and $C \in \mathcal{M}_{p}(\mathbb{R})$

Framework

Assumptions

- $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket} \in \mathbb{R}^{p}$ rv iid having a $N(0, C)$ distribution
- $\psi_{n+1} \in \mathbb{R}^{p}$, independent of the $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket}$, having a $N(\mu g, C)$ distribution

With $\mu \in \mathbb{R}, g \in \mathbb{S}^{p-1} \subset \mathbb{R}^{p}$, and $C \in \mathcal{M}_{p}(\mathbb{R})$

Test

One wants to test :

$$
H_{0}: " ~ \mu=0 " \text { vs } H_{1}: " ~ \mu>0 "
$$

in large dimension, that is to say $n \sim p$.

Investigated test family

One considers the following tests $\left(T_{f}\right)_{f \in \mathbb{R}^{p}}$:

Test variable d_{f}

$$
d_{f}=\left\langle\psi_{n+1}, f\right\rangle \quad \sim_{H_{0}} N\left(0, f^{\prime} C f\right)
$$

Rejection region

$$
W_{f}=\left\{\psi_{n+1} \in \mathbb{R}^{p}, d_{f}=\left\langle\psi_{n+1}, f\right\rangle \geq d_{f}^{(\alpha)}\right\}
$$

with

$$
d_{f}^{(\alpha)}=\Phi^{-1}(1-\alpha) \sqrt{f^{\prime} C f}
$$

Optimal T_{f}

Question

Knowing C and g, is there an optimal T_{f} ?

Optimal T_{f}

Question

Knowing C and g, is there an optimal T_{f} ?

Answer : yes

$T_{C^{-1} g}$ is optimal, among the (T_{f}), within the following meaning

- $d_{C^{-1} g}$ maximise the signal-to-noise
- $T_{C^{-1} g}$ is the most powerful test
- $T_{C^{-1} g}$ is the likelihood ratio test

Notations

In the case " C unknown", one wants to approximate $T_{C^{-1} g}$. Two new test families are considered.

Notations

In the case " C unknown", one wants to approximate $T_{C^{-1} g}$. Two new test families are considered.

\mathcal{T}_{f} tests

- f is "estimated" : depending on $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket}$, that are random, and on g
- The level, conditionally to $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket}$, is nominal;
C is known, only for computing $d_{f}^{(\alpha)}=\Phi^{-1}(1-\alpha) \sqrt{f^{\prime} C f}$

Notations

In the case " C unknown", one wants to approximate $T_{C^{-1} g}$. Two new test families are considered.

\mathcal{T}_{f} tests

\mathbb{T}_{f} tests

- f is estimated
- The threshold $d_{f}^{(\alpha)}$ is estimated depending on g and $\left(\psi_{i}\right)_{i \in \llbracket 1, n \rrbracket}$; in the same way for the p -value
- The level is not necessarily nominal

Notations

In the case " C unknown", one wants to approximate $T_{C^{-1} g}$. Two new test families are considered.
\mathcal{T}_{f} tests
\mathbb{T}_{f} tests

Naive test : T_{g}

Problem when C is not known

Objectives

One wants to construct a \mathbb{T}_{f} test having "good" properties :

- Nominal level
- A power greater than the one of the naive test T_{g}

Problem when C is not known

Objectives

One wants to construct a \mathbb{T}_{f} test having "good" properties :

- Nominal level
- A power greater than the one of the naive test T_{g}

Remark

It is possible to firstly study \mathcal{T}_{f}, noticing that " $\mathcal{T}_{f}>\mathbb{T}_{f}$ "

Using the empirical covariance matrix

$$
\hat{C}=\frac{1}{n} \sum_{i=1}^{n} \psi_{i} \psi_{i}^{\prime}
$$

Does $\mathcal{T}_{\hat{C}^{-1} g}$ have good properties ?

Using the empirical covariance matrix

$$
\hat{C}=\frac{1}{n} \sum_{i=1}^{n} \psi_{i} \psi_{i}^{\prime}
$$

Does $\mathcal{T}_{\hat{\mathrm{C}}^{-1} \mathrm{~g}}$ have good properties ?
No! (\hat{C} is quasi-singular)
The use of a pseudo-inverted truncation of \hat{C} doesn't give an efficient test either

Regularisation in our case : shrinkage

Main idea

One uses $\gamma \hat{C}+\rho I_{p}$ instead of \hat{C}.

Justification

- Interpolation with the naive test T_{g}
- Ridge regression point of view
- Power of the tests $\mathcal{T}_{\left(\gamma \hat{C}+\rho \rho_{p}\right)^{-1} g}$

Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned Estimator for Large Dimensional Covariance Matrices)

Framework :

- One reasons on $\mathcal{M}_{p}(\mathbb{R})$ with the norm

$$
\|A\|_{\mathcal{M}_{p}}^{2}=\frac{\operatorname{Tr}\left(A A^{\prime}\right)}{p}
$$

- A "general asymptotics" framework is used : $n, p_{n}, \frac{p_{n}}{n} \leq K$
- Estimators of the following family are investigated $C^{*}=\gamma \hat{C}+\rho I_{p}$. One researches the C^{*} minimising :

$$
\mathrm{E}\left(\left\|C^{*}-C\right\|_{\mathcal{M}_{p}}^{2}\right)
$$

Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned Estimator for Large Dimensional Covariance Matrices)
n fixed : optimal γ_{n}^{0} and ρ_{n}^{0} depending on C

$$
\gamma_{n}^{0}=\frac{\alpha^{2}}{\delta^{2}}, \quad \text { and } \quad \rho_{n}^{0}=\frac{\beta^{2} \nu}{\delta^{2}}
$$

where

$$
\begin{array}{ll}
\nu=\left\langle C, I_{p}\right\rangle_{\mathcal{M}_{p}}=\frac{\operatorname{Tr}(C)}{p}, & \alpha^{2}=\left\|C-\nu I_{p}\right\|_{\mathcal{M}_{p}}^{2} \\
\beta^{2}=\mathrm{E}\left(\|\hat{C}-C\|_{\mathcal{M}_{p}}^{2}\right), & \delta^{2}=\mathrm{E}\left(\left\|\hat{C}-\nu I_{p}\right\|_{\mathcal{M}_{p}}^{2}\right),
\end{array}
$$

Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned Estimator for Large Dimensional Covariance Matrices)
n fixed : optimal γ_{n}^{0} and ρ_{n}^{0} depending on C

Under "general asymptotics" : convergent estimators $\hat{\gamma}_{n}^{0}$ and $\hat{\rho}_{n}^{0}$ of γ_{n}^{0} and ρ_{n}^{0}

$$
\hat{\gamma}=\frac{\hat{\alpha}^{2}}{\hat{\delta}^{2}}, \quad \text { and } \quad \hat{\rho}=\frac{\hat{\beta}^{2} \hat{\nu}}{\hat{\delta}^{2}}
$$

With

$$
\begin{aligned}
\hat{\nu}=\left\langle\hat{C}, I_{p}\right\rangle_{\mathcal{M}_{p}}=\frac{\operatorname{Tr}(\hat{C})}{p}, & \hat{\beta}^{2}=\min \left(\hat{\delta}^{2}, \frac{1}{n^{2}} \sum_{i=1}^{n}\left\|\psi_{i} \psi_{i}^{\prime}-\hat{C}\right\|_{\mathcal{M}_{p}}^{2}\right) \\
\hat{\delta}^{2}=\left\|\hat{C}-\hat{\nu} I_{p}\right\|_{\mathcal{M}_{p}}^{2}, & \hat{\alpha}^{2}=\hat{\delta}^{2}-\hat{\beta}^{2} .
\end{aligned}
$$

Estimation of the parameters (γ, ρ)

Optimal shrinkage method (O. Ledoit, A Well-Conditioned Estimator for Large Dimensional Covariance Matrices)
n fixed : optimal γ_{n}^{0} and ρ_{n}^{0} depending on C

Under "general asymptotics" : convergent estimators $\hat{\gamma}_{n}^{0}$ and $\hat{\rho}_{n}^{0}$ of γ_{n}^{0} and ρ_{n}^{0}
A new estimator of C is defined :

$$
\hat{C}_{I}=\hat{\gamma}_{n}^{0} \hat{C}+\hat{\rho}_{n}^{0} I_{p}
$$

Bootstrap's motivations

One has to achieve the construction of $\mathbb{T}_{\hat{c}_{I}^{-1} g}$, by :

- computing the test threshold (and more generally the p-value),
- verifying that this computation is correct, or that the level is close to the nominal value,
- computing the power.

Additional treatment

- Choice of a learning sample,
- Temporal treatment (mobile average),
- Spatial centering.

Naive

Optimal regularised

Figure: Summer minimum temperatures in the model : Comparison between the naive test T_{g} and the optimal regularised $\mathbb{T}_{\hat{c}_{l}^{-1} g}$ for summer minimum temperatures taken from a climate scenario.

Minimum

Maximum

Figure: Summer temperatures in observations : Results for minimum and maximum temperatures

Methodology for statistical detection of climate change

Aurélien RIBES, Jean-Marc AZAÏS, Serge PLANTON

October 11, 2007

Questions

