Extreme Wave Crests in Space and Time

Anastassia Baxevani

Chalmers Institute of Technology

Gothenburg University

Sweden

Different parts of this work with Prof. Rychlik and Dr. Hagberg

Sea Models

Sea surface elevation is modelled by means of

• Linear model, $W(\tau) = W(x, y, t)$ - Gaussian random field that is homogeneous (invariant under translation but not rotation)

Sea Models

Sea surface elevation is modelled by means of

- Linear model, $W(\tau) = W(x, y, t)$ Gaussian random field that is homogeneous (invariant under translation but not rotation)
- Second order model, $W(\tau) = W_l(\tau) + W_q(\tau)$ the linear field plus a quadratic correction term

Wave characteristics in time

Tz: wave period; Ac: crest height

Wave characteristics in space

Spatio-temporal wave characteristics

• $H_s = 4\sqrt{\lambda_{000}}$, significant wave height

- $T_z = 2\pi \sqrt{\frac{\lambda_{000}}{\lambda_{002}}}$, average zero down-crossing wave period • $L_x = 2\pi \sqrt{\frac{\lambda_{000}}{\lambda_{200}}}$, average zero down-crossing wave length along *x*-axis
- $L_y = 2\pi \sqrt{\frac{\lambda_{000}}{\lambda_{020}}}$, average zero down-crossing wave length along *y*-axis

•
$$N = \frac{X}{L_X} \frac{Y}{L_Y} \frac{T}{L_T}, N_T = \frac{X}{L_X} \frac{Y}{L_Y}, N_X = \frac{Y}{L_Y} \frac{T}{L_T}, N_Y = \frac{X}{L_X} \frac{T}{L_T}$$

Spatio-temporal wave characteristics

•
$$V_{drift} = (V_x, V_y) = (L_x/T_z, L_y/T_z) = (\sqrt{\frac{\lambda_{002}}{\lambda_{200}}}, \sqrt{\frac{\lambda_{002}}{\lambda_{020}}})$$

• $\mathbf{v}_{pr} = (v_x, v_y) = \left(-\frac{\lambda_{101}}{\lambda_{200}}, -\frac{\lambda_{011}}{\lambda_{020}}\right)$
• $\alpha_{xt} = -\frac{v_x}{V_x} = \frac{\lambda_{101}}{\sqrt{\lambda_{200}\lambda_{002}}} \text{ and } \alpha_{yt} = -\frac{v_y}{V_y} = \frac{\lambda_{011}}{\sqrt{\lambda_{020}\lambda_{002}}}$
• $\alpha_{xt}, \alpha_{yt} \in [-1, 1]$
• $\alpha_{xt}^2 \approx 1$ for narrow-band sea

- $|\alpha_{xt}| = 1$ for a sea drifting along x-axis
- $\alpha_{xt} = 0$ and $\alpha_{yt} = 0$ for confused sea (no organised movement of waves)

Wave crest height and wave velocities

$$P(\max_{\tau \in \mathbf{S}} W(\tau) \ge u) \le \left(\frac{X}{L_x} + \frac{Y}{L_y} + \frac{T}{T_z}\right) e^{-\frac{8u^2}{H_s^2}} + \sqrt{2\pi} \left(N_t + N_y \sqrt{1 - \alpha_{xt}^2} + N_x \sqrt{1 - \alpha_{yt}^2}\right) \frac{4u}{H_s} e^{-\frac{8u^2}{H_s^2}} + 2\pi N \sqrt{1 - \alpha_{xt}^2 - \alpha_{yt}^2} \frac{16u^2}{H_s^2} e^{-\frac{8u^2}{H_s^2}}$$

with $S = [0, X] \times [0, Y] \times [0, T]$

Wave crest height and wave velocities

$$\begin{split} P(& \max_{\tau \in \mathbf{S}} W(\tau) \geq u) \leq \left(\frac{X}{L_x} + \frac{Y}{L_y} + \frac{T}{T_z} \right) e^{-\frac{8u^2}{H_s^2}} \\ &+ & \sqrt{2\pi} \left(N_t + N_y \sqrt{1 - \alpha_{xt}^2} + N_x \sqrt{1 - \alpha_{yt}^2} \right) \frac{4u}{H_s} e^{-\frac{8u^2}{H_s^2}} \\ &+ & 2\pi N \sqrt{1 - \alpha_{xt}^2 - \alpha_{yt}^2} \frac{16u^2}{H_s^2} e^{-\frac{8u^2}{H_s^2}} \\ &\text{with } \mathbf{S} = [0, X] \times [0, Y] \times [0, T] \\ \bullet & \text{For } X = Y = 0, \end{split}$$

$$P(\max_{t \in [0,T]} W(t) \ge u) \le \frac{T}{T_Z} e^{-\frac{8u^2}{H_s^2}}$$

Wave characteristics for spreading functions.

Area: $100m \times 100m$ for 10 s

$D(\omega, \theta)$	L_x	L_y	T_z	$lpha_{xt}$	v_x
box	124.87	154.45	8.7949	0.9228	-13.1023
cos2s	120.54	164.22	8.7988	0.89	-12.1936
sech2	117.62	172.45	8.7988	0.8751	-11.699
misses	117.25	173.63	8.7988	0.8658	-11.5381
poisson	110.89	199.68	8.7882	0.8202	-10.3492

Linear Sea model - Gaussian field

•
$$S(\omega, \theta) = S(\omega)D(\omega, \theta)$$

- $S(\omega)$ frequency spectrum usually JONSWAP with $H_s = 7m$ $T_p = 11s$ and $\gamma = 2.3853$
- D(ω, θ), spreading function, like box, cos2s, sech2, Misses, Poisson

Wave Crest in a Gaussian Sea

$100m\times 100m\times 10s$

Sea spectra

spectra	L_x	L_y	$lpha_{xt}$	$lpha_{yt}$	v_x	v_y
cos2s	120.54	164.22	0.89	0	-12.19	0
type 1	120.54	164.22	0	0	0	0
type 2	137.42	137.42	0.51	0.51	-7.92	-7.92

Effect of directionality to distribution of high crests

Freak Waves

Freak wave: $A_c \ge 0.72 \times 2.1 H_s$

- Buoy: For $u = 1.5H_s \Rightarrow \frac{1}{\mu^+(u)} \approx 18.5$ years and if $T_z \approx 10s \Rightarrow 60$ mil. waves
- Area 5km × 10km, $P_{xy}(u) = 0.00058 \Rightarrow \frac{1}{P_{xy}(u)} \approx 1723$ pictures or ≈ 4.5 mil. waves
- Area $5km \times 10km$ for $37 \min \Rightarrow \frac{1}{P_{xyt}(u)} \approx 1 \Rightarrow \approx 640000$ waves

Conclusions

- Seas with different spreading functions resulted to the same global maximum distribution
- confused seas = highest waves (no organised movement)
- drifting seas (narrow-band) = waves moving along one direction with high speeds = lower extreme crest heights

Problem

Find h^{crt} so that

$$P(max_{0 \le t \le T}X(t) > h^{crt}) = p_0$$

- X(t) sea surface at time t as a second order sea
 T = 1 year
- ▶ $p_0 = 10^{-4}$, then h^{crt} is called the 10 000 year wave crest

Review of methods

When p_0 is small, h^{crt} takes large values \Rightarrow

Statistical methods (i.e. Peaks Over Threshold (POT) method or yearly maxima) require crest height measurements over large periods of time

Review of methods

When p_0 is small, h^{crt} takes large values \Rightarrow

- Statistical methods (i.e. Peaks Over Threshold (POT) method or yearly maxima) require crest height measurements over large periods of time
- Mathematical models: assume independence of wave crests, see Forristall (2000), Prevosto et al. (2000) and Krogstad and Barstow (2004)

Rice method

Let $N_T^+(h)$ be the number of upcrossings of the level h by the process X(t) during the time period [0, T]. Then for any fixed time $t_0 \in [0, T]$

 $P(\max_{0 \le t \le T} X(t) > h) \le \mathsf{E}[N_T^+(h)]$

Rice method

Let $N_T^+(h)$ be the number of upcrossings of the level h by the process X(t) during the time period [0, T]. Then for any fixed time $t_0 \in [0, T]$

- $P(\max_{0 \le t \le T} X(t) > h) \le \mathsf{E}[N_T^+(h)]$
- Problem is equivalent to computing $E[N_T^+(h)]$

Computation of $E[N_T^+(h)]$

$$\mathsf{E}[N_T^+(h)] = \int_0^T \mu_t^+(h) \, dt = \int_0^T \int_0^{+\infty} z f_{X(t),\dot{X}(t)}(h,z) \, dz \, dt$$

- The density $f_{X(t),\dot{X}(t)}(h,z)$ includes two sources of variability
 - Variable sizes of sea waves during a sea state $S_t := S_t(\omega, \theta)$ for fixed t
 - Evolution of sea states with t

Computation of E $[N_T^+(h)]$

 S_t : random sequence of sea states. Then

$$\int_{0}^{+\infty} z f_{X(t), \dot{X}(t)}(h, z) \, dz = \mathsf{E}[\int_{0}^{+\infty} z f_{X(t), \dot{X}(t)|S_t}(h, z) \, dz]$$

• Change rate of $\{S_t\}$ much slower than of sea elevation, so we approximate $f_{X(t),\dot{X}(t)|S_t}(h,z)$ by that of a second order sea with S_t

Computation of E $[N_T^+(h)]$

 S_t : random sequence of sea states. Then

$$\int_{0}^{+\infty} z f_{X(t), \dot{X}(t)}(h, z) \, dz = \mathsf{E}[\int_{0}^{+\infty} z f_{X(t), \dot{X}(t)|S_{t}}(h, z) \, dz]$$

• Change rate of $\{S_t\}$ much slower than of sea elevation, so we approximate $f_{X(t),\dot{X}(t)|S_t}(h,z)$ by that of a second order sea with S_t

•
$$\int_{0}^{+\infty} z f_{X(t),\dot{X}(t)|S_t}(h,z) \, dz \approx \mu^+(h|S_t)$$

Estimation of $\mu^+(h|S)$

In the case of a stationary process and for fixed t

$$\mu^+(h|S_t) = \int_0^{+\infty} z f_{X(t),\dot{X}(t)|S_t}(h,z) \, dz,$$

where X(t) is a second order sea

- saddle point method
- Breitung method: $\mu^+(h|S) \approx c(\beta_h) \exp(-\beta_h^2/2)$ where β_h is the Hasofer-Linds safety index

● $\{S_t\} \equiv (H_s(t), T_z(t)) \Rightarrow \mu^+(h|S_t) = \mu^+(h|H_s(t), T_z(t))$

- $\{S_t\} \equiv (H_s(t), T_z(t)) \Rightarrow \mu^+(h|S_t) = \mu^+(h|H_s(t), T_z(t))$
- The long run distribution of $(H_s(t), T_z(t))$ exists Then

- $\{S_t\} \equiv (H_s(t), T_z(t)) \Rightarrow \mu^+(h|S_t) = \mu^+(h|H_s(t), T_z(t))$
- The long run distribution of $(H_s(t), T_z(t))$ exists Then
- $\mu^+(h) = \int \mu^+(h|h_s, t_z) f(h_s, t_z) dh_s dt_z$ Hence

- $\{S_t\} \equiv (H_s(t), T_z(t)) \Rightarrow \mu^+(h|S_t) = \mu^+(h|H_s(t), T_z(t))$
- The long run distribution of $(H_s(t), T_z(t))$ exists Then
- $\mu^+(h) = \int \mu^+(h|h_s, t_z) f(h_s, t_z) dh_s dt_z$ Hence
- $E[N_T^+(h)] \approx T\mu^+(h)$

Comparison of short term distribution

Solid: FORM and SORM, light dashed: Dawson, thick

Extreme Wave Crests in Space and Time - p. 22/28

References

- Baxevani, A. and Rychlik, I., (2006). Maxima for Gaussian seas, Ocean Engineering, Vol. 33, pp. 895-911.
- Baxevani, A., Hagberg, O. and Rychlik, I. (2005). Note on the distribution of extreme wave crests, *Proceedings* of OMAE 2005.
- Forristall, G. Z., (2000). Wave crest distributions: Observations and second order theory, *Journal of Physical Oceanography*, Vol. 30, pp. 329-360.
- Krogstad, H. E., and Barstow, S., (2004). Analysis and applications of second-order models for maximum crest height, *Journal of Offshore Meachanics and Arctic Engineering*, Vol. 126, pp. 66-71.

References

Prevosto, M., Krogstad, H. E., and Robin, A. (2004). Probability distributions for maximum wave and crest heights, *Coastal Engineering*, Vol. 40, pp. 329-360

Breitung method

Let $g : \mathbb{R}^n \to \mathbb{R}$ be s.t. $S = \{\mathbf{x} = (x_1, \dots, x_n); g(\mathbf{x}) = 0\}$ has a unique point \mathbf{x}_0 of minimum distance from the origin. Suppose $\mathbf{Z}(t)$ is an *n*-dimensional, stationary, differentiable, Gaussian vector process, and $\dot{\mathbf{Z}}(t)$ its derivative. Then for $g(\mathbf{Z}(t)/\beta), \beta > 0$, under some mild technical assumptions, we have:

$$\mu_{\beta}^{+}(0) = \frac{\mathbf{e}^{-\beta^{2}/2}}{2\pi} (c + O(\beta^{-2})), \qquad c = \sqrt{\frac{\mathbf{x}_{0}^{T} (\Sigma_{22} - \Sigma_{21} G_{0} \Sigma_{12}) \mathbf{x}_{0}}{\det (I + P_{0} G_{0} P_{0})}}$$

as $\beta \to \infty$ where $G_0 := \frac{1}{|\nabla g(\mathbf{x}_0)|} \left[\frac{\partial^2 g}{\partial x_i \partial x_j}(\mathbf{x}_0) \right]_{i,j=1,2,...,n}$ $P_0 := I - \mathbf{x}_0 \mathbf{x}_0^T$ and Σ is the covariance matrix of $(\mathbf{Z}(t), \dot{\mathbf{Z}}(t))$.