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Sea Models

Sea surface elevation is modelled by means of

Linear model, W (τ ) = W (x, y, t) - Gaussian random
field that is homogeneous (invariant under translation
but not rotation)
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Sea Models

Sea surface elevation is modelled by means of

Linear model, W (τ ) = W (x, y, t) - Gaussian random
field that is homogeneous (invariant under translation
but not rotation)

Second order model, W (τ ) = Wl(τ ) + Wq(τ ) - the linear
field plus a quadratic correction term
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Wave characteristics in time
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Tz: wave period; Ac: crest height
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Wave characteristics in space
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Spatio-temporal wave characteristics
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Spatio-temporal wave characteristics

Vdrift = (Vx, Vy) = (Lx/Tz, Ly/Tz) = (
√

λ002

λ200
,
√

λ002

λ020
)

vpr = (vx, vy) =
(

−λ101

λ200
,−λ011

λ020

)

αxt = − vx

Vx
= λ101√

λ200λ002

and αyt = − vy

Vy
= λ011√

λ020λ002

αxt, αyt ∈ [−1, 1]

α2
xt ≈ 1 for narrow-band sea

|αxt| = 1 for a sea drifting along x-axis
αxt = 0 and αyt = 0 for confused sea (no organised
movement of waves)
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Wave crest height and wave velocities
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with S = [0, X] × [0, Y ] × [0, T ]
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Wave crest height and wave velocities
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Wave characteristics for spreading functions.

Area: 100m × 100m for 10 s
D(ω, θ) Lx Ly Tz αxt vx

box 124.87 154.45 8.7949 0.9228 -13.1023
cos2s 120.54 164.22 8.7988 0.89 -12.1936
sech2 117.62 172.45 8.7988 0.8751 -11.699

misses 117.25 173.63 8.7988 0.8658 -11.5381
poisson 110.89 199.68 8.7882 0.8202 -10.3492
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Linear Sea model - Gaussian field

S(ω, θ) = S(ω)D(ω, θ)

S(ω) frequency spectrum usually JONSWAP with
Hs = 7m Tp = 11s and γ = 2.3853

D(ω, θ), spreading function, like box, cos2s, sech2,
Misses, Poisson
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Wave Crest in a Gaussian Sea

100m × 100m × 10s
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Sea spectra
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spectra Lx Ly αxt αyt vx vy

cos2s 120.54 164.22 0.89 0 -12.19 0
type 1 120.54 164.22 0 0 0 0
type 2 137.42 137.42 0.51 0.51 -7.92 -7.92
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Effect of directionality to distribution of high crests
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Freak Waves

Freak wave: Ac ≥ 0.72 × 2.1Hs

Buoy: For u = 1.5Hs ⇒ 1
µ+(u) ≈ 18.5 years and if

Tz ≈ 10s ⇒ 60 mil. waves

Area 5km × 10km, Pxy(u) = 0.00058 ⇒ 1
Pxy(u) ≈ 1723

pictures or ≈ 4.5 mil. waves

Area 5km × 10km for 37 min ⇒ 1
Pxyt(u) ≈ 1 ⇒≈ 640000

waves
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Conclusions

Seas with different spreading functions resulted to the
same global maximum distribution

confused seas = highest waves (no organised
movement)

drifting seas (narrow-band) = waves moving along one
direction with high speeds = lower extreme crest heights
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Problem

Find hcrt so that

P (max0≤t≤TX(t) > hcrt) = p0

X(t) - sea surface at time t as a second order sea

T = 1 year

p0 = 10−4, then hcrt is called the 10 000 year wave crest
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Review of methods

When p0 is small, hcrt takes large values ⇒
Statistical methods (i.e. Peaks Over Threshold (POT)
method or yearly maxima) require crest height
measurements over large periods of time
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Review of methods

When p0 is small, hcrt takes large values ⇒
Statistical methods (i.e. Peaks Over Threshold (POT)
method or yearly maxima) require crest height
measurements over large periods of time

Mathematical models: assume independence of wave
crests, see Forristall (2000), Prevosto et al. (2000) and
Krogstad and Barstow (2004)
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Rice method

Let N+
T (h) be the number of upcrossings of the level h by

the process X(t) during the time period [0, T ].
Then for any fixed time t0 ∈ [0, T ]

P (max0≤t≤T X(t) > h) ≤ E[N+
T (h)]
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Rice method

Let N+
T (h) be the number of upcrossings of the level h by

the process X(t) during the time period [0, T ].
Then for any fixed time t0 ∈ [0, T ]

P (max0≤t≤T X(t) > h) ≤ E[N+
T (h)]

Problem is equivalent to computing E[N+
T (h)]
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Computation of E[N+

T
(h)]

E[N+
T (h)] =

∫ T

0
µ+

t (h) dt =

∫ T

0

∫ +∞

0
zfX(t),Ẋ(t)(h, z) dz dt

The density fX(t),Ẋ(t)(h, z) includes two sources of
variability

Variable sizes of sea waves during a sea state
St := St(ω, θ) for fixed t

Evolution of sea states with t
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Computation of E[N+

T
(h)]

St: random sequence of sea states. Then

∫ +∞

0
zfX(t),Ẋ(t)(h, z) dz = E[

∫ +∞

0
zfX(t),Ẋ(t)|St

(h, z) dz]

Change rate of {St} much slower than of sea elevation,
so we approximate fX(t),Ẋ(t)|St

(h, z) by that of a second
order sea with St
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Computation of E[N+

T
(h)]

St: random sequence of sea states. Then

∫ +∞

0
zfX(t),Ẋ(t)(h, z) dz = E[

∫ +∞

0
zfX(t),Ẋ(t)|St

(h, z) dz]

Change rate of {St} much slower than of sea elevation,
so we approximate fX(t),Ẋ(t)|St

(h, z) by that of a second
order sea with St
∫ +∞
0 zfX(t),Ẋ(t)|St

(h, z) dz ≈ µ+(h|St)
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Estimation of µ+(h|S)

In the case of a stationary process and for fixed t

µ+(h|St) =

∫ +∞

0
zfX(t),Ẋ(t)|St

(h, z) dz,

where X(t) is a second order sea

saddle point method

Breitung method: µ+(h|S) ≈ c(βh) exp(−β2
h/2) where βh

is the Hasofer-Linds safety index
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Evaluation of E[N+

T
(h)]

{St} ≡ (Hs(t), Tz(t)) ⇒ µ+(h|St) = µ+(h|Hs(t), Tz(t))

Long term distribution means we look at a sea state chosen
at random
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Evaluation of E[N+

T
(h)]

{St} ≡ (Hs(t), Tz(t)) ⇒ µ+(h|St) = µ+(h|Hs(t), Tz(t))

The long run distribution of (Hs(t), Tz(t)) exists
Then

Long term distribution means we look at a sea state chosen
at random
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Evaluation of E[N+

T
(h)]

{St} ≡ (Hs(t), Tz(t)) ⇒ µ+(h|St) = µ+(h|Hs(t), Tz(t))

The long run distribution of (Hs(t), Tz(t)) exists
Then

µ+(h) =
∫

µ+(h|hs, tz)f(hs, tz) dhs dtz
Hence

Long term distribution means we look at a sea state chosen
at random
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Evaluation of E[N+

T
(h)]

{St} ≡ (Hs(t), Tz(t)) ⇒ µ+(h|St) = µ+(h|Hs(t), Tz(t))

The long run distribution of (Hs(t), Tz(t)) exists
Then

µ+(h) =
∫

µ+(h|hs, tz)f(hs, tz) dhs dtz
Hence

E[N+
T (h)] ≈ Tµ+(h)

Long term distribution means we look at a sea state chosen
at random
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Comparison of short term distribution
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Breitung method

Let g : R
n → R be s.t. S = {x = (x1, . . . , xn); g(x) = 0} has a

unique point x0 of minimum distance from the origin.
Suppose Z(t) is an n-dimensional, stationary, differentiable,
Gaussian vector process, and Ż(t) its derivative. Then for
g(Z(t)/β), β > 0, under some mild technical assumptions,
we have:

µ+
β (0) =

e−β2/2

2π
(c+O(β−2)), c =

√

xT
0 (Σ22 − Σ21G0Σ12)x0

det (I + P0G0P0)

as β → ∞ where G0 := 1
|∇g(x0)|

[

∂2g
∂xi∂xj

(x0)
]

i,j=1,2,...,n

P0 := I − x0x
T
0 and Σ is the covariance matrix of (Z(t),Ż(t)).
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