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Extremes of wave characteristics from data?    How uncertain?

1.
 

Data, classical extremal
 

estimation, 
uncertainties...  

2.
 

Refinements and Complications

3.
 

Developments

Specific focus:    Estimation of high quantiles, return levels
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t

Data:

• buoy, platform
• model
• satellite
• ship 

1  Data, Classical Methods

usually regular, frequent 

General Strategy:    allow extreme observations to drive estimation
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'Nobody believes in a theory except the person who invented it; 
everyone believes in an observation except the person who made it.'

Albert Einstein

model
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usually annual maxima(a) Classical Estimation:  Block Maxima

Fit a Generalized Extreme Value distribution to observed maxima
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1/T1-1/T

giving the                    quantile

Maximum likelihood estimation of               leads to confidence intervals

for    
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X

ERA40 model data,  21°W 54°N
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Return level estimates: simple ann max fit
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Example:     Profile log-likelihood of 50-year return level
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X

X

X

(b)  Classical Estimation: Threshold Methods

Concentrate attention on all storm peaks over a high threshold 

t

Threshold  u

Storm peaks



SEAMOCS, Palmse, Oct 2007 10

X

u
Generalized Pareto distribution for  

excesses of threshold  

t

Poisson process of occurrence of storms
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Point-process modelling:

t

X

u x
x

x

Model                 (times, sizes) of storm 
peaks by an inhomogeneous Poisson 
process with intensity density  

for a suitable region C, and possibly time-varying parameters             and   

Convenient for time-varying thresholds 

a re-formulation, often more convenient for 
handling covariate dependence

Inference via  likelihood methods as before.
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XERA40 model data,  21°W 54°N
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Ann Max

Threshold
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2  Refinements and Complications

(a)  Non-stationarity, Covariate Dependence

eg

 

annual maximum possibly

 changing with time, with NAO, ...

Atlantic 5421 Annual Max (July-June) vs

 

Winter NAO

 
1958/9 –

 

2001/2
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Accommodate changes with time or in response 
to other variables by allowing GEV/GPD/point process 
parameters to vary.  

eg

for new parameters                      which can be estimated and tested.  

eg

known functions of  t

and similarly
 

for     and

Atlantic 5421 data:   strong evidence of NAO association,
 no evidence of linear time-trend  



SEAMOCS, Palmse, Oct 2007 16

(b)  Seasonality

Take account of seasonality in estimation

–
 

by using seasonally-varying parameters in either block maxima or 
threshold modelling
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Seasonality

Wave heights over 5m, Northern N. Sea 1979-1999

X
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Separate-Months Point Process Model, N North Sea
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The Effect of Neglecting Seasonality

... under-estimation,  over-confidence in this case

100 year return level, Northern N Sea

(Carter & Challenor

 

(1981))
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Explanation   -
 

2-season case Gumbel

 

1

Gumbel

 

2Annual max = max of  Season 1 and Season 2 

suppose independent Gumbel

 

distributed

Return Level Plot

log return period
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2

Annual max

Moreover se of ret level est
 is ∝

 
estimated slope, so 

underestimates true uncertainty
 too 

A single Gumbel
 

fitted
 to Annual Max 

≡
 

linear
 

approximation to             

so underestimates true return 
levels at high return periods 
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(c)  Effect of gaps in data 

Annual maxima data:  analysis based on
 censoring possible, but... 

Threshold method:  effect easier to
 accommodate, likely to have

 smaller influence

• loss of precision 

• if data missing because of size,  more detailed statistical modelling needed

In general:
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(d)  Estimation from Satellite Data

Ground track: ERS-1, 3 day repeat

Problems:

Spatial —
 

no data from location of interest

Temporal —
 

miss storm peaks
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TOPEX Altimeter Hs Observations, Oct 1992 - July 2000

Spatial problem
 Example:  Wave heights off Vancouver 

TOPEX observations

X

Take nearby observations to be representative of those at the target

x
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tX X X X

transect times

n n
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n

Temporal problem

a) over-threshold observations unlikely to be storm peaks
 b) many storms likely to be missed

X
h h

h

h
h
h
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eg
 

95% conf interval for 100-year return level for 
= 9.1 –

 
18.8 m.   No evidence of a trend in extremes
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(e)  Estimation from Multiple Sources of Data

eg
 

satellite +  buoy;   data           and           say  on extremes           

where                 are parameters specific to the data sources and
 describes the underlying wave characteristics of interest  

Strategies:

i.
 

Consistency checks over range of data

ii.
 

For extremes:   suppose true storm peak wave heights      are
 governed by a distribution   

and conditionally on       suppose observational models for data:    

(eg
 observation with bias and instrument error) 
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Then,  if observation processes conditionally independent given ,

likelihood  is 

whence estimation and uncertainty estimates

If observation processes are dependent, then      is a pseudo-likelihood and
 inference still feasible but more challenging.
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(a)
 

Spatial Estimation 

3  Developments  

• neighbouring locations contain useful information about a site

• spatial structure is of interest in its own right

Represent spatial characteristics of extremes by allowing the parameters of 
the extremal

 
distributions of §1 to depend smoothly (and non-parametrically) 

on location.  Fit by local likelihood.  Extends to spatio-temporal estimation 
Chavez-Demoulin

 

& Davison (2005), Butler et al (2007) 

eg

Butler et al 2007
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(b)  Estimation of Multivariate Extremes  

Relevant if structure threatened by a

 combination of large values of different 
variables 
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Ledford & Tawn

 

(1997, 1998, 2003): estimation 
methods based on tail dependence models.

Heffernan & Tawn

 

(2003): powerful methods based

 on conditional distribution of components of a 
random vector given that at least one component

 is large.   

Example: from study for reservoir flood safety 
(DoE, Inst of Civ

 

Eng)

Tail dependence model

Failure 
region
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(c)  Model-Data Fusion for Extremes  

Observational evidence 

Model evidence

Comparison: model predictions vs

 

observations helps us learn about model uncertainty

 and predictive reliability.

model inadequacy
 Gaussian process?

Systematize and quantify model uncertainty and reliability by treating model 
inadequacy as a random entity    

Being developed in programme Managing Uncertainty in Complex Models (MUCM) 
for non-extreme observations.  

about which we update our knowledge in the light of model-data 
comparisons.  Bayesian methods give a natural approach. 
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Atlantic 5421:  Hs Mean Excess Plot
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Atlantic 5421:  QQ Plots for Threshold Models -
 

Stationary and  
Seasonal 



SEAMOCS, Palmse, Oct 2007 34

Atlantic 5421: RL CIs
 

for a Seasonal and a Non-Seasonal model 

non-seasonal

seasonal
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