1

Alexander Ezersky

UMR CNRS 6143 Morphodynamique Continentale et Côtière M2C Université de Caen, Basse Normandie

3. Interaction of surface waves and turbulence with bottom and and suspended particles

Several wave flumes equipped with wave wakers

Interaction of solitons with sandy bottom in a shallow water resonator

Outline

- 1. Introduction.
- 2. Excitation of solitons in a shallow water resonator.
 - 2.1 Map of regimes
 - 2.2 Numerical simulation of soliton using Boussinesq equation
- Interaction of solitons with sandy bottom.
 3.1 Evolution of sandy bottom profile
 3.2 Theoretical description
- 4. Segregation of particles under the action of solitons.
- 5. Conclusions.

Number	f (Hz)	a _h (cm)	A _{\$1} (mm)	A ₅₂ (mm)	φ_{S1} (rad)	φ _{S2} (rad)	Aa (mm)	Number of pulses
1	0.172	7.5	70.9		0.82		5.1	1
2	0.173	6.5	75.3		0.91		5.3	1
3	0.173	6	70.3		1.07		5.2	1
4	0.165	6	60.2	43.6	0.66	-0.66	3.6	2
5	0.167	6	61.7	48.5	0.70	-0.70	4.3	2
6	0.173	6	81.8		1.09		4.5	1
7	0.167	6	67.8	52.5	0.80	-0.57	4.0	2
8	0.167	7	89.0	70.7	0.81	-0.53	4.2	2

2.2 Numerical simulation of soiliton using Boussinesq equation.

Boussinesq approximation for nonlinear waves of free surface in shallow water (η :displacement of surface, ν: horizontal velocity)
$\eta_{\tau} + v_{\xi} + \varepsilon(v\eta)_{\xi} = \frac{1}{6}\mu^2 v_{\xi\xi\xi} + \frac{1}{7}\eta_{\xi\xi} - \frac{1}{7}\eta_{\xi\xi} - \frac{1}{7}\eta_{\xi\xi} + \frac{1}{7}\eta_{\xi} $
Initial conditions: (i) $\eta(\tau = 0, \xi) = 0$ et $\nu(\tau = 0, \xi) = 0$ (ii) bruit
Boundary conditions: $\frac{\partial \eta}{\partial \xi}(\tau, \xi = 0) = 0$
$v(\tau,\xi=0) = V_0 \sin(2\pi f\tau)$
$\frac{\partial \eta}{\partial \xi}(\tau,\xi=1) = 0 v(\tau,\xi=1) = 0$

Ripple wavelength: L ~ 10 cm Harmonic wave wavelength: L_h = 9.63 m Negligible scattering of the harmonic wave by the ripples as L << L_h (L/L_h ~ 10⁻²) $\Rightarrow \eta_0$ is not affected by the ripples

Significant decrease of the amplitude of soliton by:

- organized vortices and turbulence (dissipation)
- solitary wave scattering

5. Conclusions

a) Solitons and bound state of solitons were revealed in a wave flume used in resonant mode.

b) Strong interaction between sandy bottom and non-linear surface waves occurs.

c) Segregation of sinking particles in oscillating flow was found

Bibliography

 A.B.Ezersky, F.Marin Segregation of sedimenting grains of different densities in an oscillating velocity field of strongly nonlinear surface waves. Phys.Rev.E, 2008, v.78, 022301.
 F. Marin, A.B. Ezersky Formation dynamics of sand bedforms under solitons and bound states of solitons in a wave flume used in resonant mode", Europ. J. Mech., 2007, v.27, p.251-267.
 A.B. Ezersky, O.E. Polukhina, J. Brossard, F. Marin and I. Mutabazi Spatio-temporal properties of solitons excited on the surface of shallow water in a hydrodynamic resonator, Phys. Fluids, 2006, v.18, 067104.
 F. Marin, N. Abcha, J. Brossard, A. B. Ezersky, "Interaction soliton – sable dans un canal en eau peu profonde". Comptes rendus Mec. 2005, v. 333, p.227-233.